

Published on Web 09/29/2006

Highly Enantioselective Construction of a Chiral Spirocyclic Structure by the [2 + 2 + 2] Cycloaddition of Diynes and *exo*-Methylene Cyclic Compounds

Kyoji Tsuchikama, Yusuke Kuwata, and Takanori Shibata*

Department of Chemistry, School of Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan

Received June 16, 2006; E-mail: tshibata@waseda.jp

Enantioselective cycloaddition using a chiral transition metal catalyst is a well-established strategy for the synthesis of chiral compounds possessing various cyclic structures. In particular, the cycloaddition of enynes has been comprehensively studied: an oxidative coupling gives a bicyclic metallacyclopentene, in which an asymmetric carbon atom is generated. The following insertion and reductive elimination provides a cyclic compound with a chiral center at the ring-fused carbon. Pauson-Khand-type reaction ([2 + 2 + 1] cycloaddition),¹ [2 + 2 + 2] cycloaddition of an enyne and alkyne,² and intramolecular [4 + 2] cycloaddition of a dienyne³ are the selected examples (Scheme 1).^{4,5}

We here propose a new approach for asymmetric induction using a [2 + 2 + 2] cycloaddition of a diyne and an alkene (Scheme 2): an oxidative coupling gives a bicyclic metallacyclopentadiene, in which no asymmetric carbon atom is generated.⁶ The following insertion of a 1,1-disubstituted alkene along with reductive elimination induces a chiral quaternary carbon atom on the ring. The [2 + 2 + 2] cycloaddition of diynes and monosubstituted or 1,2disubstituted alkenes is already reported.⁷ However, neither the reaction using 1,1-disubstituted alkenes nor the enantioselective reaction was reported.

We chose an exo-methylene cyclic compound as an alkene component because the [2 + 2 + 2] cycloaddition gives a chiral spirocyclic compound, which could never have been obtained by the conventional enantioselective cycloadditions (Scheme 1). We examined a Rh-catalyzed reaction of carbon-tethered symmetric divide 1a and α -methylene- γ -butyrolactone (2a) under the various reaction conditions (Table 1); when the Rh-BINAP catalyst was used at 60 °C in 1,2-dichloroethane (DCE), diyne 1a was completely consumed within 3 h, and the desired bicyclic cyclohexa-1,3-diene 3aa, possessing a spirocyclic system, was obtained in very high enantiomeric excess. However, the yield was moderate because of the formation of a self-coupling cycloadduct of diyne 1a (entry 1). Dropwise addition of divne 1a to a mixture of the chiral catalyst and lactone 2a at 80 °C over 30 min significantly improved the yield (entry 2). Under the present reaction conditions, several BINAP derivatives were examined as chiral ligands (entries 3-6). As a result, xylylBINAP was the best choice, and almost perfect enantioselectivity was achieved (entry 4). It is also noteworthy that only 3 equiv of alkene 2a was sufficient to achieve a high yield in the present diyne-alkene coupling.8

We further examined a preliminarily isolated chiral rhodium complex, [Rh(cod){(S)-xylyl-binap}]BF₄, and the yield exceeded 90% (Table 2, entry 1). Under the optimal reaction conditions, various symmetric diynes and *exo*-methylene cyclic compounds were subjected to the present enantioselective [2 + 2 + 2] cycloaddition. Lactones **2b**,**c** with six- and seven-membered ring systems also underwent cycloaddition, and the corresponding spirocyclic compounds **3ab** and **3ac** were obtained in excellent enantiomeric excesses (entries 2 and 3). *exo*-Methylene cyclic

Scheme 1. Conventional Enantioselective Cycloadditions via a Metallacyclopentene with a Chiral Carbon Stereocenter

Scheme 2. A New Enantioselective Cycloaddition via a Metallacyclopentadiene without a Chiral Carbon Stereocenter

Table 1. Screening of Various Reaction Conditions

entry	ligand	temp (°C)	time (min)	yield (%)	ee (%)
1	(S)-BINAP	60	180	42	97
2	(S)-BINAP	80	30 ^a	55	96
3	(S)-tolBINAP	80	30 ^a	62	96
4	(S)-xylylBINAP	80	30 ^a	84	99
5	(S)-H ₈ -BINAP	80	30 ^a	64	97
6	(S)-SEGPHOS	80	30 ^a	49	92

^a Diyne 1a was added dropwise over 30 min.

ketones **2d**,**e** were more reactive, and the reaction proceeded at lower temperature; however, the enantioselectivity decreased (entries 4 and 5). Unsubstituted diyne **1b** was also an appropriate substrate; high yield and enantiomeric excess were achieved without double bond isomerization of the 1,3-diene moiety (entry 6). The reaction of nitrogen- and oxygen-tethered diynes **1c**,**d** and lactones **2a**,**b** also gave spirocyclic compounds with high to excellent enantiomeric excess, but excess amounts of alkenes were needed because heteroatom-tethered diynes are more reactive than carbontethered diynes and susceptible to self-coupling (entries 7–9). Cycloadduct **3cb** was determined to be an (*R*)-isomer by X-ray measurements (Figure 1).

Next, we examined the [2 + 2 + 2] cycloaddition of unsymmetric diyne **1e**, which possesses methyl and phenyl groups on its alkyne

Table 2. Cycloaddition of Various Diynes and *exo*-Methylene Cyclic Compounds

entry	Z	R	diyne	alkene ^a	yield (%)	ee (%)
1	C(CO ₂ Bn) ₂	Me	1 a	2a	94 (3aa)	99
2	$C(CO_2Bn)_2$	Me	1a	2b	93 (3ab)	98
3	$C(CO_2Bn)_2$	Me	1a	2c	88 (3ac)	97
$4^{b,c}$	$C(CO_2Bn)_2$	Me	1a	2d	62 (3ad)	81
$5^{b,c}$	$C(CO_2Bn)_2$	Me	1a	2e	72 (3ae)	80
6^d	$C(CO_2Bn)_2$	Н	1b	2a	81 (3ba)	95
7	NTs	Me	1c	$2a^e$	92 (3ca)	97
8	NTs	Me	1c	$2\mathbf{b}^{e}$	89 (3cb)	99
9^b	0	Et	1d	$2a^{f}$	50 (3da)	92

^{*a*} 3 equiv. ^{*b*} At 60 °C. ^{*c*} The reaction mixture was stirred for further 2.5 h. ^{*d*} At 40 °C. ^{*e*} 10 equiv. ^{*f*} 20 equiv.

Figure 1. Crystal structure of (R)-3cb.

termini, with lactone **2a** (eq 1). The regioselectivity of the alkene and enantioselectivity were almost perfect, and cycloadduct **3ea** was the sole isolated spirocyclic compound.

In addition to *exo*-methylene cyclic compounds, *exo*-methylene acyclic compounds were also good coupling partners, and H_8 -BINAP was found to be a better chiral ligand (Table 3); the cycloaddition of diyne **1a** with methyl methacrylate (**2f**) gave cycloadduct **3af** in almost perfect enantioselectivity (entry 1). The reaction of methyl 2-phenylacrylate (**2g**) required excess amounts and higher temperature, but a quaternary carbon stereocenter with a phenyl group was generated (entry 2). It is noteworthy that methyl acrylate (**2h**) also gave cycloadduct **3ah**, which is a highly enolizable ester, with high enantiomeric excess.

Table 3. Cycloaddition of Acrylates as Alkenes

^a Diyne was added dropwise at 80 °C.

In conclusion, we have developed a Rh-catalyzed highly enantioselective [2 + 2 + 2] cycloaddition of diynes and alkenes. The use of *exo*-methylene cyclic compounds as alkenes realized a new protocol for the catalytic synthesis of a chiral spirocyclic structure.⁹ The present enantioselective [2 + 2 + 2] cycloaddition provides access to a new chiral library possessing a quaternary carbon stereocenter, including a spirocyclic system.

Acknowledgment. We thank Takasago International Corp. for the gift of H_8 -BINAP and SEGPHOS. This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental details, spectral data for products, and CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 11688.
 (b) Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771.
 (c) Shibata, T.; Takagi, K. J. Am. Chem. Soc. 2000, 122, 982.
 (a) Evans, P. A.: Lai, K. W.; Sawyer, J. R. J. Am. Chem. Soc. 2005, 127.
- (c) Sinbata, I., Takagi, K. J. Am. Chem. Soc. 2005, 127, 12466.
 (d) Evans, P. A.; Lai, K. W.; Sawyer, J. R. J. Am. Chem. Soc. 2005, 127, 12466.
 (e) Shibata, T.; Arai, Y.; Tahara, Y. Org. Lett. 2005, 7, 4955.
 (a) O'Mahony, D. J. R.; Belanger, D. B.; Livinghouse, T. Synlett 1998, 443.
 (b) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998,
- (3) (a) O'Mailony, D. J. K., Belanger, D. D., Evinghouse, T. Synten 1990,
 (43. (b) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998,
 (63, 10077. (c) Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi,
 K. Synlett 2002, 1681.
- (4) An enantioselective ene-type reaction of enynes also proceeds via the metallacyclopentene with an asymmetric carbon atom: Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 2000, 39, 4104.
- (5) We recently reported an enantioselective intramolecular [2 + 2 + 2] cycloaddition of 1,4-diene-yne, in which a chirality at the fused carbon atom was generated also in the metallacyclopentene intermediate: Shibata, T.; Tahara, Y. J. Am. Chem. Soc. 2006, 128, 11766.
- (6) Three groups, including us, independently reported an enantioselective [2 + 2 + 2] cycloaddition of a diyne and alkyne for the generation of axial chirality; however, the chirality would be generated in the metal-lacyclopentadiene intermediate due to the ortho-substituted aryl groups on the diyne termini: (a) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew. Chem., Int. Ed. 2004, 43, 3795. (b) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382. (c) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510.
- (7) (a) Zhou, Z.; Battaglia, L. P.; Chiusoli, G. P.; Costa, M.; Nardelli, M.; Pelizzi, C.; Predieri, G. J. Chem. Soc., Chem. Commun. 1990, 1632. (b) Ikeda, S.; Mori, N.; Sato, Y. J. Am. Chem. Soc. 1997, 119, 4779. (c) Johnson, E. S.; Balaich, G. J.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 7685. (d) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209. (e) Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R. J. Org. Chem. 2006, 71, 543 and references cited therein.
- (8) In the previous examples using a transition metal catalyst other than Rh catalyst, at least more than 10 equiv of alkene was used (ref 7).
- (9) Other approaches of transition-metal-catalyzed enantioselective synthesis of chiral spirocyclic compounds: (a) Ashimori, A.; Overman, L. E. J. Org. Chem. 1992, 57, 4571. (b) Yamaura, Y.; Hyakutake, M.; Mori, M. J. Am. Chem. Soc. 1997, 119, 7615. (c) Teng, X.; Cefalo, D. R.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 10779. (d) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704.

JA064257U